ANALYTICAL AND NUMERICAL SOLUTIONS OF A MIXED
PROBLEM FOR THE GENERALIZED EQUATIONS OF PRANDTL

V. M. Solopenko ’ UDC 532.51

There are, at the present time, many papers devoted to an examination and numerical solution of various
types of equations of motion of a viscous fluid, these equations being in some sense much simpler than the
Navier — Stokes equations (see, for example, [1, 2]). The choice of terms retained in the various modifications
of the latter equations is usually dictated by the physical properties present in a specific problem. A study was
made in [3] of the stability of the solutions of the generalized Prandtl equations in terms of the curl of the ve-
locity.

We study a two-dimensional stationary flow of a viscous fluid in which a fundamental direction has been
chosen for the flow along solid surfaces. As an example, we cite the case of flow in ducts. There the equa-
tions of motion must satisfy two basic requirements: They mustdescribe the flow close to the boundary and
also in the interior of the fluid, and they must display the evolutionary nature of the equations in the direction
of the longitudinal coordinate. The equations can be obtained formally by retaining terms of order (Re)"1/ 2 in
the derivation of the Prandtl equations. The terms neglected have a high order of smallness close to the bound-
ary and also in the fluid interior.

We then have (employing the usual notation)

uduldx + véuldy = —apldx + (1/Re)d%u/dy?;
udvlozx + vovldy = —apldy + (1/Re)d%v/0y?; 1) »
ouldx -+ dvigy = 0.

The Reynolds number Re is determined here, for example, from the characteristic dimension of the flow
region and from the mean velocity. The exterior and interior asymptotic expansions of the system of equations
(1) reduce, as do also the Navier —Stokes equations, to the Euler equations and to the Prandtl equations, re-
spectively. Thus, having a solution of the system (1), we can bypass the matching process, Moreover, we can
rewrite Eqs. (1) in the form of the Cauchy —~Kovalevskaya equations:

dplox = (1/Re)0%u/0y® 4 udv/dy — vouldy;
ovldx = (1/Re)0™/dy? — (v/u)dvidy — (1/u)dp/dy; (2)
ou/dx = —ov/dy,

these equations make it possible to carry out the flow calculations from the initial section downstream, We
point out two obvious advantages in using the system of equations (2) to make calculations in comparison with
a solution of the Navier —Stokes equations: economy in machine time and the absence of any need to assign the
flow parameters at the exit section, often a troublesome item. In what follows we examine the group-invariant
solutions of the system (1), linearized solutions of this system, and a Cauchy problem for the system (2).

. In the system of differential equations (1) the number m of unknown functions is m=3, and the number of
independent variables is n=2, We seek a basis for the Lie algebra of infinitesimal operators of the group of
transformations admissible by the system of equations (1). To proceed, we construct in aceordance with the
general theory given in [4] a second extension of an arbitrary operator of the group and then solve the system
of defining equations. As a result, we obtain a basis L, (R turns out to be equal to 4) in the form

X, = —x0/0x — yd/dy + udldu + vdldv - 2pdidp, X, = 8/dx, X5 = 8/dy, X, = 8/dp.
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The general rank of the matrix |[§&, nléll » 1=1, 2; k=1,..., 3; @=1,..., 4, is equal to 4; it is preserved on a
manifold specified by the solutions of the system ' of equations (1). Let r denote the rank of the corresponding
Lie subalgebra. Any nonsingular invariant manifold of the group G, is given in the form

Wil I)=0, v=1,2 ..., pn

Then n +m — r=t; the number p =t —p (o =t — 3) is called the rank of a partially invariant (of an invariant)
solution, and the number § =m —- p is the invariance defect. A necessary condition for the existence of a par-
tially invariant solution may, in this case, be written in the form

max{r — 2, 0} < 8 < min{r — 1, 2},

making it possible to construct a table of the possible types of partially invariant (invariant) solutions of Egs.
(1) (see [5]). With the aid of the matrices of the inner automorphisms of the algebra L4, we determine an op-
timal system of one-parameter subgroups 6,, which has, in this case, the form

X,, aX, + BX, + vX,.
Of greatest interest is the invariant solution 1, constructed on the subgroup H;. We have the following
set of invariants:
I =uzx, I, = vz, Iy = pa?, I, = ylz.
In accordance with this, we seek a solution of the system (1) in the form
u = (Llx)g(8), v= (L&), p = po + (L/2)n(E), & = yla. @)
Substituting the expression (3) into Egs. (2), we obtain

1’ = —Re ¢>—(2n¢ <+ 2x Re)/(1 - &9,
¢ =1, ' = (2n — 2x Re E)/Re(l + &?). 4

The system of equations (4) can be applied successfully to calculate the flow in a two-dimensional dif-
fuser. We consider a diffuser with an angular opening of 2« (tan a=a). Tothesystem of equations (4) we add
the boundary conditions

—e<L E< a, g(—a) =0, a{—a) = 0, n(—a) =c. (5)
The problem (4), (5) has a unique solution. In making numerical calculations, we select the coefficient ¢ from

the condition ¢ (@) = 0. Typical profiles of the unknown functions are displayed in Fig. 1 for Re=100 and ¢ =
0.5. The streamlines in this case are the lines ¢ =const.

We note that for small angular openings of the diffuser the second derivatives with respect to the longi-
tudinal coordinate are small. Actually, if we denote the width of the diffuser between inlet and outlet sections
(Al =2 tan cAx) by 7 , and the mean mass velocity by uy,, we have

[9%ulda?) : [0°u/0y*| ~ (Bup /IP) tg® o @ (16/3) u /I* ~ tg’a.

Using Table 1, we can also construct various partially invariant solutions, For example, we seek a par-
tially invariant solution of rank 1 of type 3 on the subgroup H, in the form

u = (1)g(pe?). v = (U2)p(pz").

Proceeding now to a study of the linearized solutions of the system of equations (1), we consider a mixed
problem for the flow in the duct z= [0, x|, ¥y & |—1, 1]. We seek a solution in the form

1

9 ]

u:(1_y2)+ul7v=vlrp:’—ﬁ§+p17j uldy:O1 (6)
—1

which corresponds to the Reynolds number Re, determined from the maximum velocity in Poiseuille flow and

the duct half-width, We show that lim u;, = lim v; = lim p, = 0; i.e., we show that the solution of the linearized

x> 0 x —>00 x> o

generalized equations of Prandil for a two-dimensional tube tends toward Poiseuille flow,
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TABLE 1

N R t 8 o m Form of the
solution

1 1 4 0 1 3 Iy, In, Ty, {14)

2 2 3 0 0 3 I=C, i=1,.,3

3 2 3 1 1 2 Iy Iy G,

4 3 2 1 0 2 I=C, i=1,2

5 3 2 2 1 1 Iy (I

6 4 1 2 0 1 h=C

Yy

|
x=04 OI°0I ypop7 O T

~0,5
Fig. 1 Fig. 2

Substituting the expressions (6) into the system of equations (1), assuming uy, vy, py<1, and neglecting
the squared terms, we obtain the linear system of equations

(1 — y»)0u,/dy — 2yv, = —0p,/9x + (1/Re)du,/dy*;
(I — y9dvy/02 = —p,/y+ (1/Re)d%v,/0y*; du,/dx + Ov,/éy= 0. (7

We take the following initial and boundary conditions for the solutions of the system (7):
Uz, = 1) = vy, 1) = 0; u,(0, y) = B f¥) & Col—1,11. (8

We seek a solution of the problem (7), (8) in the form

—hpX n s ~—Ap* n
u= 3 AT Ul @) v = B Bue ()
"~ " )

oc

pr= X e "pl(y).

Let the set of characteristic functions {vj} and characterlstlc values {A ,} of the boundary-value problem,
which we formulate below, be known. Then, putting u1 = (vi) (in accordance with the continuity equation), we
have

y .
Bn = "‘?"nAmpTiL: Bn j { ?" (i——y2)v1+ (Ui)]

The coefficients A, are obtained from the infinite system of linear algebraic equations

WA

i 1
4, f wlutdy = j f ulidy, k=1, ...,
2

n=1 —1

Il

The existence of a unique solution of this problem is guaranteed by the completeness of the set of charac-
teristic functions of the corresponding boundary-value problem.
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From the relations (7), (9) we obtain the equations
AT (1= Y)AE + 290,01 By + 020F — — -1 (1) B
— A (L= ) Btk = — (p}) + - (1) B,
and thus arrive at the following boundary-value problem:
. " 2
o OO + G [t =1 22 | ot i — g ) =,
. Re
Vi(E1) =@+ 1) =0,n=1,..., co.

We now make a study of the first characteristic values of the problem (10) for large Reynolds numbers Re.
Putting pn=An Reandneglecting the terms u¥/Re® and ;3/Re?, we obtain, in place of Egs. (10),

(10)

DY+, [0 (1= 92) + 23] = 0. (1)

A similar differential equation was obtained in [6]. The boundary-value problem for Eq. (11) can be
studied by the Schwarz method [Eq. (11) hasthe form M|v| =uN|v[]l. This yields an infinite set of characteristic
functions and (correspondingly) an infinite spectrum of characteristic values. The sequence is increasing; an
approximate calculation yields the value py =13.9. Thus, we have Poiseuille flow as the limiting solution of the
problem (7), (8). As can be seen from Egs. (9), there is an e-fold drop in deviations from the parabolic profile
at a distance x=Re/13.9. For Re=25, we see that x ~ 0.9 of the tube diameter. This is in good agreement with
the numerically calculated result given in [7]. The value given in [6] is roughly twice as large.

Finally, we consider a Cauchy problem (or a mixed boundary-value problem) for the system of general-
ized equations of Prandtl in the form (2). Because of the absence in the first and third equations of the cor-
responding second derivatives with respect to the coordinate y, the given system of equations is not parabolic
in the Petrovskii sense (we are not speaking of the presence of the nonlinear terms). Therefore, in devising a
numerical scheme fo calculate the flow from the initial to the final section, it is necessary for stability of the
solution to confirm the contractive nature of the operator of the problem. We apply the method of splitting (see
[7, 8]), modified to accomodate the case in which the first part of the splitting operator is parabolic, The
second part lends itself, in fact, to an analytical study. We write out the sufficient conditions for the correct-
ness of the analytic Cauchy problem corresponding to the second operator, these conditions being necessary for
a realization of a numerical solution. In addition, we apply to the system (2) the well-known method of para-
bolic regularization. We show the sufficiency of the stability analysis given below by means of a numerical ex-
periment,

Thus, the transition from the previous layer to the following layer along the evolutionary coordinate is
carried out in the system of equations (2) in two stages. In the first half-step we solve the evolutionary proh-
lem

B o a 8
py [ReaE Tz —rg) g, P
a
— |V |= 1 a 1 @ v d U | = v
iz u) — (T4t O (u)“A‘<u> a2
' 0 0 0 /

with corresponding boundary conditions, and in the second half-step we have the operator
B & a1 &
Re 9 3y Re a2

s J4 ) P P\
#(° |- by 0 0 (v =4, v)_
] X u

(o -z 0

Here a, B, b=const. Obviously, as B— 0, we have A;+A,=A, where Ais the complete evolutionary operator
of the system of equations (2).

It is a known fact (see [8]) that an error at a single step due to splitting is proportional to the quantity
[l AzAql] h%, where hy is the step along the evolutionary coordinate. Thus, when both operators are bounded,
we can attain a very high degree of aceuracy. I is clear that the system (12) represents a parabolic system of
equations in the two unknown functions p and v. Such systems were studied in [9] for sufficiently "good" multi-
pliers of the derivatives on the right-hand side. In numerical calculations it is, in point of fact, the linear
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problem that is solved, wherein the multipliers of the derivatives are taken from the previous layer. This re-
sults in an error at a given step of about h}z{.

In making the calculations it is useful to confirm that the operator A, is a contraction operator. We now
examine the operator A, Making the change of variables (6) in Eqs. (13), we obtain '

ap,/ox = (1/Re)du,/0y* +- (B/Re)d?p, /0y + adv,/dy; (14)
ov 0z = bop,/dy: Au,ldx = —adv,/dy.

To study the behavior of the solutions of the system (14), we can now apply the Fourier method. We have
I . . .
Mo} = - ub + o pl k5 ot = bpl
Ml = — ol (y— pi, vi, ut).
Eliminating the functions u} and p}, we find that v} satisfies the ordinary differential equation
2 ”
o — (BBRe kRt Rl 2 Rout =0,

Including the boundary conditions for this equation, for example, in the form (10), we find that the boundary-
value problem is solvable if the roots of the characteristic equation

2 (;,25/Re.b+ Aab Re) 2 _7{!_ Re — 0

are of the form z, 2= i&, z3 41=+7, where { is a real number, 7 is an arbitrary complex number connected

with ¢ by means of the condition for the vanishing of the characteristic determinant. Putting ¢ 2=C, —n2=c,
we find from Vieta's theorem a relationship among the characteristic numbers A and 2y, k=1,.. ., 4:
—As— At = C +¢; gh3 = Ce, (15)

where q=Re/b; 8=8/b; t=a Re. From the relations (15) we obtain an algebraic equation in the number A:
AP 4= A%sClq - AiClg + C?lg = 0. ' (16)

Thus, the question as to the correctness of the Cauchy problem for the operator A2 is reduced to a study of the
roots of Eq. (16). The condition Real A; < 0 is satisfied only when

sClg =0, 1Clg >0, C¥q >0, (sClg)(iClg) > C*/g.
This gives the condition for the correctness of the evolutionary problem for the operator A, in the form
af > 1. 1"

Through an appropriate choice of the splitting the condition (17) becomes independent of the spectrum of the
characteristic numbers of the boundary-value problem for

viCL), n=1, ..., 00

The condition (17), however, imposes an essential restriction on the step size hy. Indeed, since |[AA,|l~
a?, the error made in the calculations in going from a given layer to the following layer may be estimated
by means of the relationship

A ~ JALA B ~ b ~ (’ig—)z

Thus, to preserve accuracy in the calculations as f—0, we must refine the stép size hy.

We proceed now to a numerical solution of the problem concerning fluid flow in a two-dimensional duct,
This problem was solved in a simplified form in [10]. To the system of equations (2) we adjoin the following
conditions: -
wez, 1) =@ 1) =0, w0, y) = u(), ¥(0,y) = voly),
p(0, y) = poy); z& [0, |, y = [—1, 1]; uy, vy, po = Col—1,11.

Applying the decomposition (12), (13), we consider each problem separately. The difference scheme corre-
sponding to the first operator (12) may be written in the form
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1 i —
Pt — b} = 2 (pit — 2pf* 4 Pl 4 v (2ul —u —

pitl —pitt - 1;+1
_a)_Zi_Zh___—'c(2u,+1—2u,_1+u, 1—-u,+1 5

i+l

vl vh = (U1+1 1+1 + vz-{-i)

(Zu ’_1)R e h?
zv}_vi—i i+1 i4-1

. 7 Viel TP T i+t
T 2u§—u§—1 ) Z_h( 2u ,_1 + b) (PH—i PJ—- i)

i=0,..00,j=0,.. 2N, h =1/N, ©=hy
vo =van = 0, p5*" = ps, P’ = pin.
We solve the difference boundary-value problem by the method of drive:

Pi = AjaPia + Biwips + Ciups
v; = DjPsra + Egst V41 + Fre,

which is usually employed for parabolic systems with no essential difficulties. The operator A, is a parabolic
nonlinear operator. In all the numerical calculations its norm was found to be less than one. The numerical

computation for the second part of the problem requires a special approach. We write down the difference
scheme for the operator (13):

i1 i__ TP +1_ 1 1 i+1 1 a i1 i
pi —pi= h2 (pt 1+ 4+ pit ) + e Be Re it (witi — 2uj*' — uifi+ 5 (witt —vjt3);

i+ i i4-1 i 2T it {41
ui — 4w — uje = 5 (7~ o) (18)

i+l 2b 1 1
vitt — vl 4 vl — vl = —,;(P;L-PJ-’- )

i i i i
ug=u2N=vg=va=0.

As is evident from the relations (18), the last two equations are written for the fictitious intermediate
point j +1/2. The absence of boundary conditions for p requires a corresponding increase in the equations for
the numerical scheme, For this reason, we realize the predictor in the form

uj = Ajpalitr + Bl + Ciy:
= Djuipr + EjpaViss + Fipg
Pi = Gipptzer + HirsUies + Kjig

For the start of the predictor cycle, we need to write, using the last two equations of the system (18)
twice, the system of equations in the neighborhood of the boundary in the form

1po + mpy + Ipy + 1 (uy — 2u) - tv, = — pi,
U+ uy = &g U U T U — T} = &, v - v(pr — po) = Mo
vy + vy = v(py — Py = 1,
lL,mmn,t, p?: .o, E1,V, Mgs M1 = Const;

from these equations we can express Py, Py, Py, V4, Uy in terms of v, and u,, and this stipulates the start of the
predictor process. Inthe course of the calculation, we eliminate the quantity pj.44 in the first equation of (18)
with the help of the third equation. In the rest of the calculations the predictor process is the standard one,
The possibility of constructing a noncontradictory scheme, one which at first glance appears to be indetermi-
nate, is guaranteed by the fact that the system of equations (13) is of the fourth order in the variable y.

In making the calculations, we printed out, after a specified number of steps, the grid norm in L, of the
unknown functions after each of the operators A;. Thus, we verified the contractive nature of both operators
numerically. To improve the stability of the solution in the case of large Reynolds numbers, we carried out a
repeated iteration at the second half-step.

Up to Reynolds numbers of order 1000 the whole computational scheme was found to be stable in the large.
The solution of the problem has a Poiseuille profile as its limiting profile. Typical profiles are shown, by
section, in Fig. 2 (py;=p +2x/Re; uy =u —(1 -y9); vy=v; Re=10). It should be noted that our method permits the
introduction, without any notable difficulties, of semiempirical turbulent stresses into the ealculations.
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COMPUTATION OF UNSTEADY FLOW PAST A CYLINDER
INSTANTANEOUSLY SET IN MOTION

V. I. Kravchenko, Yu. D. Shevelev, UDC 518:517.9:532
and V. V. Shchennikov

§1. The first results on the solution of unsteady flow past a body of finite dimensions instantaneously
set in motion were obtained within the framework of the boundary-layer theory.

For the initial flow stage the first two terms of the power series expansion of the solution in the powers
of t ¢t is time) were obtained by Blasius in [1], the obtained solution being valid as Re — o,

The solution found by Blasius was improved in [2]. Subsequently, an attempt was made to extend the
Blasius solution to the case of low Reynolds numbers [3, 4].

The use of numerical methods to solve nonstationary Navier — Stokes equations [5-10] turns out to be a
more promising approach to the problem under investigation. In [10] a survey of the literature on this subject
is given., In the case of suddenly arising motion of a cylinder one of the difficulties lies in the formulation of
the initial conditions.

It follows from the theory of the boundary layer [11] that the vorticity of the fluid flow is infinitely large
at the initial time instant and is then concentrated in an infinitely thin region around the cylinder surface.
Therefore, a straightforward application of finite-difference approximations to the original equations does not
produce a correct pattern of the initial flow past the cylinder [7]. Moreover, it was shown in [12] that to ob-
tain in this case a satisfactory approximate solution very small steps in time must be taken.
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