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There  a r e ,  at the p re sen t  t ime ,  many  pape r s  devoted to an examinat ion  and n u m e r i c a l  solution of var ious  
types  of equations of motion of a v iscous  fluid, these  equations being in some  sense  much s imp le r  than the 
Navier  - Stokes equations (see,  for  example ,  [1, 2]). The choice  of t e r m s  r e t a ined  in the var ious  modif icat ions 
of the la t te r  equations is usual ly  dictated by the physica l  p r o p e r t i e s  p re sen t  in a specif ic  p rob lem.  A study was  
made in [3] of the s tab i l i ty  of the solutions of the genera l ized  Prandt l  equations in t e r m s  of the cur l  of the ve -  
loc ity. 

We study a two-d imens iona l  s t a t iona ry  flow of a v iscous  fluid in which a fundamental  d i rec t ion  has been 
chosen for  the flow along sol id su r f aces .  As an example ,  we cite the ca se  of flow in ducts.  The re  the equa-  
t ions of motion must  sa t i s fy  two bas ic  r e q u i r e m e n t s :  They mus t  de sc r ibe  the flow c lose  to the boundary and 
also in the in ter ior  of the fluid, and they must  d isplay  the evolut ionary  na ture  of the equations in the d i rec t ion 
of the longitudinal coordinate .  The equations can be obtained fo rma l ly  by re ta in ing  t e r m s  of o rde r  (Re) -1/2 in 
the der iva t ion  of the l>randtl equations.  The t e r m s  neglected have a high o rde r  of s m a l l n e s s  c lose  to the bound- 
a r y  and a lso  in the fluid in ter ior .  

We then have (employing the usual  notation) 

uOu/Ox ~ vOu/Oy = --Op/Ox ~- (URe)c)2u/Oy~; 

uOv/Ox -~ vOv/Oy - --Op/Oy ~ (t/Re)O2v/Oy2; (1) 

Ou/Ox + Ov/Oy = O. 

The Reynolds number  Re is de te rmined  he re ,  for  example ,  f r o m  the c h a r a c t e r i s t i c  d imension of the flow 
reg ion  and f r o m  the mean velocity.  The ex t e r io r  and in ter ior  asymptot ic  expansions of the s y s t e m  of equations 
(1) r educe ,  as do a lso  the N a v i e r - S t o k e s  equat ions,  to the Euler  equations and to the Prandt l  equations,  r e -  
spect ive ly .  Thus,  having a solution of the s y s t e m  (1), we can bypass  the matching p r o c e s s .  Moreove r ,  we can 
r e w r i t e  Eqs.  (1) in the f o r m  of the C a n c h y - K o v a l e v s k a y a  equations:  

Op/Ox = (l/Re)O~-u/Oy 2 + uOv/Oy ~ vOu/Oy; 

o~/Oz = (1/ne)O~vlOy 2 - (vfu)O~,la~- (l/u)OplOy; (2) 
Ou/Ox -~ --OvlOy ; 

these  equations make  it poss ib le  to c a r r y  out the flow calcula t ions  f r o m  the initial  sec t ion  downs t ream.  We 
point out two obvious advantages  in using the s y s t e m  of equations (2) to make  calculat ions in c o m p a r i s o n  with 
a solution of the N a v i e r - S t o k e s  equations:  economy in machine t ime  and the absence  of any need to ass ign  the 
flow p a r a m e t e r s  at the exit sec t ion ,  often a t r o u b l e s o m e  i tem. In what follows we examine the g roup- invar ian t  
solut ions of the s y s t e m  (1), l inea r i zed  solutions of this s y s t e m ,  and a Cauehy p r o b l e m  for  the s y s t e m  (2). 

In the s y s t e m  of d i f ferent ia l  equations (1) the number  m of unl~own functions is m = 3 ,  and the number  of 
independent va r i ab l e s  is n =2. We seek  a bas i s  for  the Lie a lgeb ra  of inf ini tes imal  o p e r a t o r s  of the group of 
t r a n s f o r m a t i o n s  admiss ib le  by the s y s t e m  of equations (1). To proceed ,  we cons t ruc t  in accordance  with the 
genera l  t heo ry  given in [4] a second extension of an a r b i t r a r y  ope ra to r  of the group and then solve the s y s t e m  
of defining equations.  As a r e su l t ,  we obtain a bas i s  L 4 (R tu rns  out to be equal to 4) in the f o r m  

X 1 = --xO/Ox - -  yO/Oy ~ uO/Ou ~ vO/Ov ~- 2pO/Op, X2 = 0/0x, X3 : O/Oy, X 4 = O/Op. 
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The  g e n e r a l  r a n k  of the  m a t r i x  1 [ ~ ,  ~?kH, i = l ,  2; k = l , . . . ,  3; a =1 ,  . . . .  4, is  equa l  to  4; it  is  p r e s e r v e d  on a 
m a n i f o l d  s p e c i f i e d  by  the  s o l u t i o n s  of t he  s y s t e m ,  of  equa t ions  (1). Let  r deno te  t he  r a n k  of  the  c o r r e s p o n d i n g  
Lie  s u b a l g e b r a .  Any  n o n s i n g u l a r  i n v a r i a n t  m a n i f o l d  of  t he  g r o u p  G 4 is  g iven  in the  f o r m  

IIY~(II . . . . .  It) = 0, v =  t ,  2, . . . ,  ix. 

Then  n + m - r = t; the  n u m b e r  p = t - :  p (p = t - 3) i s  c a l l e d  the  r a n k  of a p a r t i a l l y  [nvar  iant  (of an i n v a r  iant) 
so lu t ion ,  and the  n u m b e r  5 = m  - # is  t he  i n v a r i a n c e  de fec t .  A n e c e s s a r y  cond i t i on  fo r  t he  e x i s t e n c e  of a p a r -  
t i a l l y  [ n v a r i a n t  s o l u t i o n  m a y ,  in t h i s  c a s e ,  be w r i t t e n  in t h e  f o r m  

max{r - -  2, 0} ~ 5 ~< min{r - -  t ,  2}, 

m a k i n g  i t  p o s s i b l e  to c o n s t r u c t  a t a b l e  of t he  p o s s i b l e  t y p e s  of p a r t i a l l y  i n v a r i a n t  ( invar ian t )  s o l u t i o n s  of Eqs .  
(1) ( see  [5]). Wi th  the  a i d  of  t he  m a t r i c e s  of the  i nne r  a u t o m o r p h i s m s  of  t he  a l g e b r a  L4, we  d e t e r m i n e  an  o p -  
t i m a l  s y s t e m  of  o n e - p a r a m e t e r  s u b g r o u p s  01, wh ich  h a s ,  in th i s  c a s e ,  t he  f o r m  

X1, aX2 + [3X3 -i- ?X4. 

Of g r e a t e s t  i n t e r e s t  is the  i n v a r i a n t  s o l u t i o n  1, c o n s t r u c t e d  on the  s u b g r o u p  g 1. We have  the  fo l lowing  
s e t  of i n v a r i a n t s :  

11 --= u x ,  I , ,  -= v x ,  13 = p x  9,, 14 = g / x .  

In a c c o r d a n c e  wi th  t h i s ,  we s e e k  a s o l u t i o n  of t he  s y s t e m  (1) in t he  f o r m  

u = (llx)~(~), v = (t/x)r p = P0 + (llx2)a(~), ~ = g l x .  

Subs t i tu t ing  the  e x p r e s s i o n  (3) into Eqs .  (2), we  ob t a in  

(3) 

11' -= - -Re  q~--(2~l~ -~ 2~ Re)/(l + ~"-), 

�9 ' = ~l, ;~' = (2~1 - -  2n Re ~)/Re(I -f- ~"). (4) 

The  s y s t e m  of equa t ions  (4) c a n  be  a p p l i e d  s u c c e s s f u l l y  to  c a l c u l a t e  the  f low in a t w o - d i m e n s i o n a l  d i f -  
f u s e r .  We c o n s i d e r  a d i f f u s e r  wi th  an  a n g u l a r  ope n ing  of 2 a  ( tan a = a). To the  s y s t e m  of e q u a t i o n s  (4) we add 
the  b o u n d a r y  cond i t i ons  

- - a  ~< ~ ~< a, q~(--a) = O, a ( - -a)  = O, Tl(--a) ~- c. (5) 

The  p r o b l e m  (4), (5) has  a unique  so lu t ion .  In m a k i n g  n u m e r i c a l  c a l c u l a t i o n s ,  we  s e l e c t  t he  c o e f f i c i e n t  c f r o m  
the  cond i t i on  ~0 (a)  = 0. T y p i c a l  p r o f i l e s  of the  unknown func t ions  a r e  d i s p l a y e d  in F ig .  1 fo r  R e  =100 and a = 
0.5. The  s t r e a m l i n e s  in th i s  c a s e  a r e  the  l i ne s  ~ = c o n s t .  

We note  tha t  fo r  s m a l l  a n g u l a r  open ings  of the  d i f f u s e r  the  s e c o n d  d e r i v a t i v e s  wi th  r e s p e c t  to  t he  l o n g i -  
t ud ina l  c o o r d i n a t e  a r e  s m a l l .  A c t u a l l y ,  if we deno te  t he  wid th  of  t he  d i f f u s e r  b e t w e e n  in le t  and  ou t l e t  s e c t i o n s  
(~/  =2 t a n  e~hx) by  l , and  the  m e a n  m a s s  v e l o c i t y  by  urn,  we  have  

IO~-ulOx~l : la~-u/Oy~ I ~ (8Umq2) tg ~ ct : (16/3) Um!12 ~ tg2a. 

Us ing  T a b l e  1, w e  c a n  a l s o  c o n s t r u c t  v a r i o u s  p a r t i a l l y  i n v a r i a n t  s o l u t i o n s .  F o r  e x a m p l e ,  w e  s e e k  a p a r -  
t i a l l y  i n v a r i a n t  s o l u t i o n  of  r a n k  1 of t y p e  3 on the  s u b g r o u p  H i in the  f o r m  

u =- ( t / x ) ~ ( p x ' 2 ) ,  v = ( l l x ) q ~ ( p x " ) .  

P r o c e e d i n g  now to a s t u d y  of  t he  l i n e a r i z e d  s o l u t i o n s  of the  s y s t e m  of  equa t i ons  (1), w e  c o n s i d e r  a m i x e d  
p r o b l e m  for  the  f low in t he  duct  x ~  10, ool, y ~ I--1,  t 1. We s e e k  a s o l u t i o n  in the  f o r m  

1 

2x S u = ( t  - -  y2) -t- u ,  v = v l ,  p - -  Re  "4- P l ,  u ~ @  = 0, (6) 
- - I  

which  c o r r e s p o n d s  to  t he  R e y n o l d s  n u m b e r  R e ,  d e t e r m i n e d  f r o m  the  m a x i m u m  v e l o c i t y  in P o i s e u i l l e  f low and 
the  duct  h a f t - w i d t h .  We show tha t  lira u 1 = lira v 1 = lim Px = 0; i . e . ,  w e  show tha t  th~  s o l u t i o n  of  the  l i n e a r i z e d  

g e n e r a l i z e d  e q u a t i o n s  of P r a n d t l  fo r  a t w o - d i m e n s i o n a l  tube  t e n d s  t o w a r d  P o i s e u i l l e  f low. 
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TABLE 1 

N R l 1 6 p Form o f  t h e  
{ solution 
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' J / h  + 
, I t / I ]  i 

- - o j  "2'_';)"'"~;t-oY'"~"_'D~'"d,/-'~.7 x a7 a ~  

Pig. 1 Fig. 2 

Substituting the expres s ions  (6) into the s y s t e m  of equations (1), a s s u m i n g  ul, vl ,  pl<<l,  and neglect ing 
the squared  t e r m s ,  we obtain the l inear  s y s t e m  of equations 

(1 --  y~)~ul!~y - -  2yv 1 -= - -Opl l~x  @ (ilRe)O~ullOy'-; 

(l  - -  y~)aVl/SX = - - 8 p l l c ) y +  (tlBe)O~v~!Oy~; Ou~/Ox ~- Ov~lOy= O. (7) 

We take the following initial and boundary conditions for  the solutions of the s y s t e m  (7)." 

~ ( x , + _  l )  = v~(x, ___ i )  = O; u~(o, y) = l(y);  t(y) ~ C o l - t ,  t I. (s) 

We seek  a solution of the p r o b l e m  (7), (8) in the f o r m  

u t = A~e ul (y), vl = Bne v~ (y), 
~=l ~=i  (9) 

Pl = ~ e -~PT(g ) .  

Let the set of characteris t ic  functions { v~} and characteris t ic  values {X n} of the boundary-value problem, 
which we fo rmula te  below, be known. Then, putting tz~ = -  (vn) r (in accordance  with the continuity equation), we 
have 

Y 

The coeff ic ients  A n a r e  obtained f r o m  the infinite s y s t e m  of l inear  a lgebra ic  equations 

n = l  - - i  - - i  

The exis tence  of a unique solution of this p r o b l e m  is guaranteed by the comple teness  of the set  of c h a r a c -  
t e r i s t i c  functions of the co r respond ing  boundary-va lue  p rob lem.  
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F r o m  the re la t ions  (7), (9) we obtain the equations 

A~.ul ( t _  y~) ~2 .t_ 2y),~v,~Bl ~+,Pt2 ~ = _ Rfl_~ (v~) "B,,; 

- ~ ( l  - y~) B~v? = - -  (p~)" + ~- '  (v,)~" B~ 

and thus a r r i ve  at the following boundary-value problem:  

(V?) ~ + (v?)" [z~ (l - y~) + so j + =o, 
, ( i o )  

v~(z  i )=@~(_+ l))' = 0 ,  n =  1 ..... oo. 

We now make a study of the f i r s t  cha rac te r i s t i c  values of the problem (10) for  la rge  Reynolds numbers  Be. 
l~utting ttn=~,n Re and neg lec t ing the t e rms  p2/Re2 and p3/Re2, we obtain, in place of Eqs. (10), 

(v?) tv + ~ [(v?)" (i -- y~) Jr 2v~] = 0. (11) 

A s imi la r  different ial  equation was obtained in [6]. The boundary-value prob lem for Eq. (11) can be 
studied by the Schwarz method [Eq. (11) has the form M Iv[ = pN[ v[ ]. This yields an infinite set  of cha rac t e r i s t i c  
functions and (correspondingly) an infinite spec t rum of cha rac t e r i s t i c  values.  The sequence is increasing;  an 
approximate  calculat ion yields the value Pl =13.9. Thus,  we have Poiseuil le flow as the l imit ing solution of the 
prob lem (7), (8). As can be seen f r o m  Eqs. (9), the re  is an e-fold drop in deviations f r o m  the parabolic  prof i le  
at a distance x = R e / 1 3 . 9 .  For  Re =25, we see that x - 0 . 9  of the tube d iameter .  This is in good agreement  with 
the numer ica l ly  calculated r e su l t  given in [7]. The value given in [6] is roughly twice as large.  

Final ly,  we consider  a Cauehy prob lem (or a mixed boundary-value problem) for  the sy s t em  of genera l -  
ized equations of Prandtl  in the f o r m  (2). Because of the absence in the f i r s t  and th i rd  equations of the c o r -  
responding second der ivat ives  with r e spec t  to the coordinate  y, the given s y s t e m  of equations is not parabolic  
in the Petrovski i  sense  (we a re  not speaking of the p resence  of the nonlinear t e rms ) .  The re fo re ,  in devising a 
numer ica l  scheme to calculate  the flow f r o m  the initial to the final sect ion,  it is n e c e s s a r y  for  s tabil i ty of the 
solution to conf i rm the cont rac t ive  nature  of the opera tor  of the problem. We apply the method of split t ing (see 
[7, 8]), modified to aceomodate  the case  in which the f i r s t  par t  of the splitt ing opera tor  is parabolic .  The 
second par t  lends i tself ,  in fact ,  to an analyt ical  study. We wri te  out the sufficient conditions for the c o r r e c t -  
ness  of the analytic Cauchy problem corresponding  to the second opera to r ,  these  conditions being n e c e s s a r y  for 
a rea l iza t ion  of a numer ica l  solution. In addition, we apply to the sys t em (2) the well-known method of pa ra -  
bolic regular iza t ion.  We show the suff iciency of the s tabi l i ty  analysis  given below by means of a numer ica l  ex-  
per iment .  

Thus,  the t rans i t ion f r o m  the previous layer  to the following layer  along the evolut ionary coordinate  is 
c a r r i e d  out in the sy s t em of equations (2) in two stages.  In the f i r s t  ha l f - s tep  we solve the evolut ionary prob-  
l em 

_ _ o / v / =  o , o~ o o =--A~ (12) 
Ox\u / (+-]-bo Oy uRe oOY~ u ~y : J t : )  

with corresponding boundary conditions, and in the second half-step we have the operator 

= 0 0 ~ A2 
ax 00y 

0 @ 

Here  a ,  fl, b=eons t .  Obviously, as fl--* 0, we have AI+A~=A , where  Ais the complete  evolut ionary opera tor  
of the sy s t e m of equations (2). 

It is a known fact  (see [8]) that an e r r o r  at a single s tep due to split t ing is propor t ional  to the quantity 
I[ A1A211 h2x, where  h x is the s tep along the evolut ionary coordinate .  Thus,  when both opera to rs  a re  bounded, 

we can at tain a v e r y  high degree  of accuracy.  It is c lea r  that the sy s t em  (12) r ep r e sen t s  a parabolic  s y s t em of 
equations in the two unknown functions p and v. Such sys tems  w e re  studied in [9] for  suff icient ly "good" mult i -  
p l ie rs  of the der ivat ives  on the r ight-hand side. In numer ica l  calculations it is ,  in point of fac t ,  the l inear  
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p r o b l e m  that  is so lved,  where in  the mul t ip l i e r s  of the de r iva t ives  a r e  taken  f r o m  the previous  l aye r .  This  r e -  
sul ts  in an e r r o r  at a given s t ep  of about h2x . 

In making the ca lcula t ions  it is useful  to con f i rm  that  the ope ra to r  A 1 is a cont rac t ion  ope ra to r .  We now 
examine  the ope ra to r  A 2. Making the change of va r i ab l e s  (6) in Eqs.  (13), we obtain 

OpllOx =- (llRe)O"-ul/Oy ~ -~ (~IRe)O2pl/Og ~ + ~zOvJOy; (14) 
Ovi/Ox = bOpllOg; OurlOx = --OvilOg. 

To s tudy the behavior  of the solut ions of the s y s t e m  (14), we can  now apply the Four i e r  method. We have 

~,pl = h:-~ u ~ t  ~" +.N-~ p~"+av l ' ;  ~vl = bpl'; 

= -- vi I.g--*" Pi, v~, ul). 

Eliminat ing  the functions ul and pl,  we find that  vl s a t i s f i e s  the o rd ina ry  di f ferent ia l  equation 

vii:v-- .~'f~lR x~b Re vl + T = 

Including the boundary conditions for  this equation, for  example ,  in the f o r m  (10), we find that  the boundary-  
value p rob l em is solvable  if the roo t s  of the c h a r a c t e r i s t i c  equation 

+ = 0  Z 4 - -  

a r e  of the f o r m  z l , 2 = *  i~,  z3t4=*~? , where  ~ is a r e a l  number ,  ~/ is an a r b i t r a r y  complex  number  connected 
with ~ by means  of the condition for  the vanishing of the c h a r a c t e r i s t i c  de terminant .  Putting ~ 2 = C , - ~ 7 2 = c ,  
we find f r o m  Vie ta ' s  t h e o r e m  a re la t ionsh ip  among the c h a r a c t e r i s t i c  number s  X and Zk, k =  1 , . . . ,  4: 

- - ~ 2 s - -  ~,t = C + e; q)2 = Cc, (15) 

where  q = R e / b ;  s =f l /b ;  t = a  Re. F r o m  the re la t ions  (15) we obtain an a lgebra ic  equation in the number  ~t : 

k 3 + k:sC/q 4- ktC/q + C~ = 0. (16) 

Thus,  the question as to the c o r r e c t n e s s  of the Canchy p r o b l e m  for  the ope ra to r  A 2 is r educed  to a study of the 
roo t s  of Eq. (16). The condition Real  X i < 0 is sa t i s f ied  only when 

sC/q > O, tC/q > O, C2/q > O, (sC/q)(tC/q) > C"-/q. 

This gives the condition for  the c o r r e c t n e s s  of the evolu t ionary  p r o b l e m  for  the ope ra to r  A 2 in the f o r m  

a~ > i. (17) 

Through an appropr i a t e  choice of the spl i t t ing the condition (17) becomes  independent of the spec t rum of the 
c h a r a c t e r i s t i c  numbers  of the boundary-va lue  p r o b l e m  for  

vl :{C.}, n = t  . . . . .  oo. 

The condition (17), however ,  imposes  an essen t i a l  r e s t r i c t i o n  on the s tep  s ize  h x. Indeed, s ince ]IA~A~H ~ 
~ 2  the e r r o r  made in the calcula t ions  in going f r o m  a given l ayer  to the following l a y e r  may  be es t imated  
by means  of the re la t ionsh ip  

Thus,  to p r e s e r v e  a c c u r a c y  in the calcula t ions  as f l-~0,  we mus t  re f ine  the s tep  s ize  h x. 

We p roceed  now to a numer i ca l  solution of the p r o b l e m  concern ing  fluid flow in a two-d imens iona l  duct. 
This  p r o b l e m  was  solved in a s impl i f ied  f o r m  in [10]. To the s y s t e m  of equations (2) we adjoin the following 
condit ions:  

u(x, -4- t) = dx, :i: 1) = 0, u(0, y) = uo(y), v(0, y) = vo(y), 

p(0, g ) - p o ( y ) ;  x ~  [0, c~], g ~  [ . 1 ,  11; u0, vo, p o ~ C o [ - - l , i l .  

Applying the decomposi t ion  (12), (13), we cons ider  each  p r o b l e m  sepa ra t e ly .  The di f ference  scheme  t o r t e -  
spending to the f i r s t  ope r a t o r  (12) may  be wr i t t en  in the f o r m  
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p } + ' - - p ~  ~ ( p ~ + ]  2p~ + i -  ++~+~(2u} i - I  = -- " t Pj+I -- uj --  

- -  - -  2 u j _ ,  + u j _ ,  - -  u j + , )  "}+'  2h }h ; 

v~ +i - -  v} = u~ X-, h+ kvj-i vj+ij-- 
( 2 s - - u  j )Re  

,,,+i ..~+, ( ) (  2v~ - -  v~ - i  -i+~ - -  ~ J - i  �9 t r 
Pj+i --+ +u+"-+-- uj~-' 2h 2h 2ui__u~_t  -{-b - -p i+_ l ) ,  

i = O . . . . .  ~ ,  ] = 0, . . . ,  2N ,  h = t / N ,  T = hx; 

v~ = vIN = O, p~+, = Pt,  P~+' : P~t~. 

We solve the difference boundary-value problem by the method of drive: 

Pj = Ai+aPj+I + Bj+xvj+l -J- Cj+a; 

v j  = Dj+lpj+I  -+- E t + i  vj+l -+- FI+I, 

which is usually employed for parabolic sys tems  with no essent ial  difficulties. The opera tor  A 1 is a parabolic 
nonlinear operator .  In all the numer ica l  calculations its n o r m  was found to be less  than one. The numer ica l  
computation for the second par t  of the problem requ i res  a special  approach. We wri te  down the difference 
scheme for the opera tor  (13): 

p~+l _+, ~I+ / ~ + i  ++t~ . ++t t t+t _ _ p j = _ ~ e h 2 k p j _ i _ _ 2 p ~ + t ~ _  - -  + t i+l . + + 1 .  m ++1~ pj+tJ "+/ R-~21.uj--t ':--~ui - - u j + t - v - ' ~ i ,  V j+l - -v j - - l , t ;  

i 2T i + l  i+ l~ .  
+1 - + -  j+l : T ("J - v j + , , ,  ( i s )  

"~+1 i t+t ~ 2Tb / i+l ~i+l'~ 
Vj --  Vj + Vj+~ --  Vj+~ = "-U kPJ+~--t'J J; 

~2N ~ 2N ~ 0,  

As is evident f r o m  the relat ions (18), the last  two equations a re  wri t ten for the fictit ious intermediate  
point j +1/2.  The absence of boundary conditions for  p r equ i res  a cor responding  increase  in the equations for 
the numerica l  scheme.  For  this reason ,  we rea l ize  the predictor  in the f o r m  

uj = Aj+~uj+ 1 + Bj+lvj+ 1 + Cj+I: 

v~ = Dj+,Uj+l + Ei+~vj+, + Fj+a;  

p j  = Gj+itti+ I + Hi+lev i+  1 -~- Kj++ .  

For the s ta r t  of the predic tor  cycle ,  we need to wri te ,  using the last  two equations of the sy s t em (18) 
twice, the sy s t em of equations in the neighborhood of the boundary in the f o r m  

lpo + mp~ -3- lp,. @ n (u~ - -  2ul) + tv~. = - -  pC, 

ux + ,ttv~ = ~o, u~ + u~ + ,u(w_ - -  v~) = ~ ,  v~ + v(p~ - -  Pc) = ~]o, 

v~ + v, + v(p~ - -  p~) = ~h, 

l, m, n, t, p~, P,~0, ~,v, ~lo, +h = Const; 

f r o m  these equations we can express  P0, Pl, P2, vl, ul in t e rms  of v 2 and u2, and this st ipulates the s ta r t  of the 
predic tor  process .  In the course  of the calculation, we eliminate the quantity pj +t in the f i r s t  equation of (18) 
with the help of the third equation. In the r e s t  of the calculations the predic tor  p rocess  is the s tandard one. 
The possibil i ty of const ruct ing a noncontradictory scheme,  one which at f i r s t  glance appears  to be indetermi-  
nate, is guaranteed by the fact that the sy s t em of equations (13) is of the fourth o rde r  in the var iable  y. 

In making the calculat ions,  we printed out, after a specified number of s teps,  the grid n o r m  in L 2 of the 
unknown functions after  each of the opera tors  A i. Thus, we verif ied the contract ive nature of both opera tors  
numerical ly .  To improve the stabil i ty of the solution in the case  of large Reynolds numbers ,  we ca r r i ed  out a 
repeated  i terat ion at the second half-step.  

Up to Reynolds numbers  of o rder  1000 the whole computational scheme was f(~und to be stable in the Iarge.  
The solution of the problem has a Poiseuille profile as its l imiting profile.  Typical  profiles a re  shown, by 
section,  in Fig. 2 (pl=p +2x/Re;  u 1 =u - ( 1 - y ~ ) ;  v t=v ;  Re =10). It should be noted that our method permi ts  the 
introduction, without any notable difficulties, of semiempi r iea l  turbulent s t r e s s e s  into the calculations.  
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C O M P U T A T I O N  OF  U N S T E A D Y  F L O W  P A S T  

I N S T A N T A N E O U S L Y  S E T  IN M O T I O N  

V. I.  K r a v c h e n k o ,  Yu .  D. S h e v e l e v ,  
a n d  V. V. S h e h e n n i k o v  

A CYLINDER 

UDC 518 : 517.9 : 532 

w 1. The f i r s t  r e su l t s  on the solution of unsteady flow past a body of finite dimensions instantaneously 
set  in motion were  obtained within the f r amework  of the boundary- layer  theory .  

For  the initial flow stage the f i r s t  two t e r m s  of the power s e r i e s  expansion of the solution in the powers 
of t (t is time) were  obtained by Blasius in [1], the obtained solution being valid as Re --~ ~. 

The solution found by Blasius was improved in [2]. Subsequently, an at tempt was made to extend the 
Blasius solution to the case  of low Reynolds numbers  [3, 4]. 

The use of numer ica l  methods to solve nonsta t ionary Navier -S tokes  equations [5-10] turns  out to be a 
m o r e  promis ing  approach to the prob lem under investigation. In [10] a su rvey  of the l i t e ra tu re  on this subject  
is given. In the case  of suddenly ar is ing  motion of a cyl inder  one of the difficulties l ies in the formula t ion  of 
the initial conditions. 

It follows f r o m  the theory  of the boundary layer  [11] that the vor t ic i ty  of the fluid flow is infinitely large 
at the initial t ime instant and is then concent ra ted  in an infinitely thin region around the cyl inder  surface .  
The r e f o r e ,  a s t ra igh t forward  application of f in i te -d i f fe rence  approximations to the original  equations does not 
produce a c o r r e c t  pa t tern  of the initial flow past the cyl inder  [7]. Moreover ,  it was shown in [12] that to ob- 
tain in this case  a sa t i s fac to ry  approximate  solution v e r y  smal l  steps in t ime must be taken. 
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